群论

时间:2024-03-06 14:23:17编辑:小体

群论,是数学概念。在数学和抽象代数中,群论研究名为群的代数结构。群在抽象代数中具有基本的重要地位:许多代数结构,包括环、域和模等可以看作是在群的基础上添加新的运算和公理而形成的。

群的概念在数学的许多分支都有出现,而且群论的研究方法也对抽象代数的其它分支有重要影响。

群论的重要性还体现在物理学和化学的研究中,因为许多不同的物理结构,如晶体结构和氢原子结构可以用群论方法来进行建模。

如何通俗的解释什么是群论

群论是描述对称的数学理论。我们日常所说的对称,大多是对于几何图案:正方形、正三角形、圆、立方体、球等等。如果要数一数有多少个对称,也不难做到:长方形有两个(左右对称,上下对称),正方形有四个(多了两条对角线),圆有无数个(相对于每条直径)。群的特征是变换,任何封闭的变换操作集都可以用群表示。物理里用它来表示对称,是因为对称操作总是某种变换操作,而且肯定是封闭的,所以必然成群。

上一篇:l4是什么意思

下一篇:什么是测交